
AD-A097 16.3 STATE UNIV OF NEW YORK AT BUFFALO DEPT OF ENGINEERIN-ETC F/6 20/11
FREE TORSIONAL VIBRATIONS OF A HOLLOW CYLINDER WITH LAMINATED P--ETCIUl
FEB 81 R K KAUL, C S LEE N00014-75-C-0302

UNCLASSIFIED 122 NL

.. r EEIEEEI,,
*muuuuuuuuuuu"iuuiaum

I ~E-EI



HllH I.0 ((2 Il jjll! 2I1

IIII1 III=
40 2.

11111 L25 CIIII1

MILROU.JCfY R Nil lT )N l|-I N riAR1



Duputnmn o EngqINNrig Sdmce aI Nucea nY

FACULTY OF ENGINEERING AND APPIED SCIENCES Lu

Stabe Univerity o New York at Bufflo t

0

Q C LEVEL

* Report No. 122

FREE TORSIONAL VIBRATIONS OF A HOLLOW CYLINDER
WITH LAMINATED PERIODIC STRUCTURE*

R. K. Kal and C. S. Lee

* DTIC
ELECTESA 3 1 198D

Frur, 1981

*This research was supported I part by the Office of Naval Research,
Contract No. N00014-75-C0302, to Research Foundation of the State
University of New York at Buffalo, Buffalo, N.Y. 14214. Approved for public
release. Distribution unlimited.... ,: : 1 331 035



FREE TORSIONAL VIBRATIONS OF A POLLOW-CYLINDER

WITH LAMINATED PERIODIC STRUCTURE " -

by 1

State University of New York at Buffalo

Buffalo, NY 14214

ABSTRACT

The theory of torsional vibrations of a circular, hollow cylinder

with a piecewise constant periodic variation of rigidity modulus and

mass density is developed in terms of Floquet waves. The dispersion

spectrum is shown to have band structure, and the arrangement of

characteristic sequence at the end-points of the Brillouin zone is

studied. The problem of co-existence of periodic solution is examined

in detail and the regions of stability and lability are charted.
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1. INTRODUCTION AND GOVERNING EQUATIONS

Consider an infinite, circular, hollow cylinder with inner

radius b , outer radius a and thickness 2h E a-b, a > b, b > 0.

In cylindrical coordinates (r,8,z), the domain R of the hollow,

homogeneous cylinder is defined as R : R1xR2 , where R, : b < r < a,
R2 : jzj < - and 0 < e < 2w . In the longitudinal z-direction the

domain R is the union of denumerable infinite number of cells R2 d I
with identical properties, so that R2 : Rd * Each cell Rd con-

sists of the union of two layers Ri and RI with z-domains

R 0 < z < k and R : k < z < d, where d = (Z + T) is the lattice4 distance of a unit cell. We assume that the material properties of the

elastic layer R are the modulus of rigidity u and mass density p

and the corresponding material properties of the elastic layer R7 are

specified by the parameters 1i and p , respectively. We thus assume

that each cell consists of two layers of lengths k and , and

material properties (p,p) and (G,p) , with the additional assumptions

./p > 0 P/ > 0 and p/p > 0 . We also assume that an infinite

number of these unit cells are bonded together at their common interfaces

Izi - nd , n- 0,1,2,... so that the domain R defines an infinite,

circular, hollow, layered cylinder with periodic structure of material

constants, with real period d .

For time-harmonic torsional waves with angular frequency w , the

displacement components (ur, u ) 0 , and the non-trivial tangential

component of displacement u 0, u satisfies in an open domain R the

boundary eigenvalue problem
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S rj r + a z + 2 =0 , VPGR

(1)

T --R = 0 , aR : (r=a and r=b) Izi <

where for a homogeneous, hollow cylinder R b < r < a , 1z < ,

S1 = -/us is the non-dimensional frequency, ws = (w/2h)c is the

lowest thickness-shear frequency of an isotropic, homogenous, infinite1'

plate of half-thickness h , and c =- (/p)' 2  is the speed of the

shear wave in an infinite, homogeneous, isotropic elastic medium with

shear modulus p and mass density p ,

Using Bernoulli's method of separation of variables, we get the

separated equations

d EdR1 + l(2 r ]R =0 b < r < a
dr Lrdjrj +r j~j= ~~

ZV + Z2 h ] = 0 , IzI < (2)

K2 W _ &2) ,

where we assumed the product solution to be the form u(r,z) - R(r)Z(z),

and accents indicate differentiation with respect to coordinate z

Since

r r- (u/r) , (3)

it follows that the boundary conditions are

d
b rR) - 2R - 0 on Re (4)

Numbers in brackets designate References at end of paper.
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In addition T =t T 0 and
rz

Du (5)

Now the structured, hollow cylinder consists of an infinite

number of unit cells, and in the case under discussion, each cell con-

sists of two layers. Therefore, for the two layers in each cell, the

governing equations are

Z1 + E Z= 0 2 (~2 K 2) , 0< z <

(6)

h"+ = 0 Z2 ((yj)2 _ K2) 2 z < d

where and are the longitudinal wave numbers in the layers of

thickness k and i , respectively, and y2 E (j/p)( /j). Because

the cylinder is of periodic structure with period d , these equations

hold from cell to cell. The wave numbers C and Z have therefore to

be extended as periodic functions of period d , where y is a piece-

wise constant. Therefore, in principle, we have a second order differ-

ential equation with piecewise constant periodic coefficient.

The general theory of differential equations with periodic coeffi-

cients is due to Floquet [2], and an account of the theory can be found

in books: Ince [3], Stoker [4], and Strutt [5]. In quantum-mechanical

problems use of Floquet's theory was first made by Kronig and Penney [6],

and subsequently reviewed in his book by Brillouin [7]. More recently,

Kaul and Herrmann [8], and Delph et al [9,10] have made use of Brillouin's

procedure in solving some of the important wave propagation problems in

periodically structured elastic solid.
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However, when the periodic coefficients are piecewise constant,

Brillouin's method is unnecessarily long and arduous. Meissner has

shown that when the coefficients are piecewise constant, an exact solu-

tion can be easily obtained in terms of elementary functions, [11].

An excellent review of Meissner equation and its various properties is

contained in a recent paper by Hochstadt, [12]. The chief advantage of

the method is that the size of the characteristic determinant depends

only on the order of the differential equation and is independent of

* - the number of layers in the unit cell. Thus in the present problem,

where we are dealing with a second order system, the order of the

characteristic determinant is 2x2, irrespective of whether there are

two or more layers in the cell.

The purpose of this paper is therefore twofold, i) to illustrate

use of Meissner's method, and ii) to study in greater detail the

problem of torsional waves in a hollow, structured cylinder. In addi-

tion to the discussion of dispersion spectrum, we also study the typical

Lyapunov-Haupt arrangement of the characteristic sequence 113,14], the

problem of co-existence of periodic solutions, and the regions of

stability and lability. Certain critical cases and properties of band-

spectrum are not discussed, and can be found in an earlier report [15].
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2. SOLUTION R(r) IN THE RADIAL DIRECTION

To find the radial eigenfunctions R n(r) , we first solve the

boundary eigenvalue problem

-( d R + j2r2-l)R 8 (WK/2h), b < r < a , a > b

(1)

d
r d(rR) - 2R 0 on r =a and r= b

qI

This is obviously a self-adjoint, singular boundary value problem with

82 > 0 and real, and the eigenfunctions are orthogonal with respect

to weight r . The general solution is

R(r) A-J -(r) --I BaYl(Or) , 82 0 (2)
8 1 8r) 2 1

where A and B are two arbitrary constants. Since the Wronskian

rW(Jl(0r), Yl(Or)] = 2/i(#O), it follows that the solution is valid

for all admissible values of separation constant 8 . In particular,

when 8 = 0 , we get from eqn. (2)

R(r) - Ar + B/r , 8=0. (3)

The two coefficients A and B are so chosen that the shear

stress TrO vanishes on both boundaries aR : r - a and r = b.
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Using the general solution R(r) in the boundary condition (1)2

and setting the determinant of the coefficients A and B equal to

zero, we get the eigenvalue equation

P2 [J 2 (8)Y 2 (Bb) - J2 (8b)Y2 (0a)] = 0 , (4)

and the amplitude coefficient is given by

B A 4J2(a) 82Y2 (2 : 20 a) •(5)

Since the boundary value problem is self-adjoint , the eigenvalue

* equation (4) has simple roots, which are all real and discrete and can

be arranged in an increasing order

0 =a2 <2 K 2 < . . . < 02 < 2 < . . ...
0 1 2 nn no

Corresponding to every eigenvalue there is an eigenfunction and these

eigenfunctions form a complete set, which are mutually orthogonal with

respect to weight r . For every eigenvalue 8 we can find B inn n

terms of An , and therefore the radial eigenfunction R n(r) can be

written in the form

R(r) = a2(a) [Y2(8a)J1 (8r) - J2(6a)Y1(r)] ' 82 0 (6)

where the suffix n = 0,1,2,... belonging to R(r), A and P has

been suppressed for brevity. For 80 = 0 , the eigenfunction R (r)
0

takes the simple form
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R C r) A A r (7)

and represents a pure torsional mode.

* These eigenfunctIons can be easily normalized, if we make use of

the algebraic property that the product of two cylinder functions

C (r) and D (r) can be written as

2rC (r)D (r) = f[r2(C WrD Wr + C (r)D(r))

-r(C (r)D Wr + C WrD (r))] (8)

* Making use of the normalizing condition

A.a

J rR2(r)dr 1
b

and the algebraic identity just mentioned, we find that corresponding

to the eigenfunction R~r) ,the normalized coefficient A in eqn. (6)

is given by

1a Y2 (0a)

where

C(r) =.r2 [y2(aa){j2( r) J J(ar)J ($r)} +

J2($a){y2(0r) - Y (Or)Y (Or)) - (10)

S2(8a)Y 2(a){2J I(Br)Y 1(r) -J 0(ar)Y 2 (6r0 Y- e) ~l



The noriialized sct of orteogonal eigenfunctions are thus given by

R l"r) ) = Jn (3a)

RJ(r) , (4: y r) 2
,,/ Cir)~ 1 .Y2(a) " .

In particular, in the limiting case when 5 = C , we have a pure

torsional mode

Ro(r)= - a > b (12)

In the cast of a solid cyl;der b = 0 , are the simple roots

of the eigenvalue equation J,'(.a) = 0 , and the normalized set of

.- ,4orthogonal eigenfuncions take he Simple form

R?) --a l( r)/J (Ua) , 2.

(13)

R (r) = 2r/a2 , 2
0

If we write b/a E t , then

a -- lt b l

and the eigenvaiue equation (4) takes the -

J(Z)Y()- J(Zt)Y 2 (Z) (14)

For t < I , Lhe asymptotic exa:;sion ,or tl p-t h root of this trans-

cen-untal equation i., given by te M clN,,on scries 16],
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p~l + 30tq fl- 3q2(l + lit + t 2 )

1 8q4(11- 9t- 109t2 -9t
3 + llt4) + ..Y1,(15)

where

(1-t) p =1,3..(16)

Evidently, the lowest root of eqn. (14) is K =0 .The higher roots
0

of this equation are given with sufficient accuracy by the asymptotic

formula (15). For t = 2/3 , the first three roots are K 1 =1.030 405b,

K 2=2.015 6684 , K 3= 3.010 5057. For p > 3 the higher roots become

increasingly accurate. For t =113, K2  2.115 5496, K 3.081 0800,

K 4 4.061 9010 ,etc.
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3. DISPLACEMENT FIELD Z(z) IN ONE CELL

The domain of a typical cell R x Rd  is the union of two layers

R x R and R1 x R- with an interface RfR . The displacement

components Z(z) G R and Z(z) 6 RI are governed by the ordinary

differential equations (1.6)

Z"(z) + a2 Z(z) = 0 , Vz R R 0 < z <

~(1)

Z"(z) + c 2 Z(z) = 0 , Vz G RT, R-: k < z < d

d = (k + i)

*where

2h 2h

2= (Q2 _ K2 ) 2= ((y2) 2 _ K2 ) , (2)

2= (c/c)2  
, c 2 = -/p , 2 =

The continuity of displacement u(r,z) and shear s Tz

at the interface Rn R7 requires that the functions Z(z) and Z(z)

must satisfy the continuity conditions

Z(k) = Z(2) ,
(3)

= 1Z'(k) ,

where accent denotes differentiation with respect to the coordiuatc z

.. ..... ii U ~ m ~



We assume the general solution of the differential equation

(1) in the form

12Z(z) = A cosaz + B- sinaz , a2 , 0 , z G R

(4)

Z(z) A cosaz + B sinaz , 2 0 , z GR

The two linearly independent solutions

Wl(Z )  cosaz , w(z) E I sinaz (5)

satisfy the initial conditions

wl(O) 1 , w(o) 0o) = 1 (6)

and therefore the Wronskian W[wl(Z) , w2 (z)] = This establishes

the linear independence for a2 > 0. Similarly it follows that cosaz

and (sinaz)/a are also linearly independent for a2 > 0

Using the continuity equation (3) at the interface z £ , we

can determine the coefficients A and B in terms of the coefficients

A and B . These coefficients are

=A(C + sIS) + B(SE - 41 C)
a pa

(7)

aBaCE PaO l
, , •
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where

C E cosz , C E cos-a , S sina , S E sinak (8)

and the coefficients A and B are still to be determined.

Having determined the coefficients A and B , the general solution

in the fundamental cell Rk U R in terms of the coefficients A and

B takes the form

Z(z) = Aw1 (z) + Bw2 (z) , a2 > 0 z 6 R

(9)

Z(z) = Awl(z) + B 2 (z) a2 , 0 , z R
Z1 2

where now

11

w2 (z) z cosa(z -L) + C sina(z -k.)a B

and the respective Wronskians are

W [ W l ,1W 2 1 , W [ W l W 2 ] =  5 •( i

In order that w and w2  be always linearly independent, their corres-

ponding Wronskian must be non-zero. This requires that 0 <
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It can be easily verified that at the interface z = k of the two

layers in a primitive cell

w (9) = Wl(t) w2() = 2(1)

(12)

and wiw(M) = w (Oz) , w() =

and therefore the general solution (9) satisfies the continuity condi-

tions (3).

It may be finally remarked that this process can be easily general-

ized if there are more than two layers in a primitive cell. Such an

extension to three and four layered composite is contained in Meissner's

paper, [11].
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4. QUASI-PERIODIC SOLUTIONS IN A CYLINDER

WITH PERIODIC STRUCTURE

In the case of a cylinder with periodic structure with period d

we require that at the common interface between two adjacent cells, the

displacement and stress be continuous and at least quasi-periodic. The

conditions of continuity at the cell interface z = d are

+
u(r,d ) = u(r,d )

~(1)

T ze(rd-) = Tze(rd+)

Quasi-periodicity from cell to cell requires that

u(r,z+d) = au(r,z)

Tz0(r,z+d) = OTz (r,z) 0

u(r,z+d) = au(r,z)
< z < d (2) 2

Tze(r,z+d) = OTze(r,z) (

where a is a suitable constant to be determined, [3]. Combining the

continuity and the quasi-periodic conditions we find that at the cell

interface the appropriate continuity conditions are

u(rd-) - cu(r,O )
(3)

ze (rd) - o ze (r,O )z iO =o
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In each lamina of the unit cell, the tangential component of the

displacement can be expressed in the product form

u(r,z) - R(r)Z(z) , u(r,z) - R(r)Z(z) (4)

where the eigenfunctions R(r), Z(z) and Z(z) are defined by equations

(2.11) and (3.9),respectively. The continuity conditions (3) at a

typical cell interface therefore take the simple form

4Z(d) = oZ(o6)
(5)

1'(d-) = oaZ'(o) (

The functions Z and Z contain two arbitrary constants A and

B which can now be determined if we make use of the continuity equation

(5). Substituting the functions Z and Z in these two equations, we

get a pair of linear homogeneous equations

[ w 2(d) 0 (6)

I ~(d) W'(d)-Gij [B 1  ()

Existence of a non-trivial solution for a system of homogeneous equations

requires that the determinant of the coefficients A and B must vanish.

This gives us the characteristic o-equation

02 - oj,(d) + wj(d)I + 1 =0, (7

Note that the 2x2- form of the determinant remains unchanged if there
are more than two layers in a primitive cell.
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where we have used the fact that W[w 1 (d), w2 (d)] =p . In addition,

for each value of the constant a , the amplitude ratio is given by

A:B = w2 (d):[o-w1 (d)I = [o'-w (d)]:iw{(d). (8)

--- Assuming o 0, we can rewrite the characteristic equation (7)

as

+ H (9)

where

H w (d) + w'(d) . (10)

It easily follows that

2 = H + 2 ,

{P~- 1 2 
=H - 2

and therefore

o - -- -H-2)( 2) . (12)

If y1 and 02 are two roots of the eqn. (7), then it is obvious that

a 1 and (aI + 02) = I. Evidently 01 E o and 12  1/o are the

two roots and are explicitly given by
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= I -- 4] (13)

02 1/ 1

We now distinguish three cases:

i) JHI < 2 . If HI , 2, then from (13) it follows that oI and 02

are complex conjugate and of absolute value unity. In this case all

solutions are bounded since quasi-periodicity from cell to cell requires

that after n cells

4 Z(z + nd) nZ(z), Z(z + nd) = anZ(z) (14)

where now 1i 1

1i) IHJ > 2 . If JHI > 2 , then from (13) it follows that c 0 °2

and the two roots are real. Since 0102 = 1 , it implies that if one

root is greater than unity then the other must be less than unity in

absolute value. Thus as the number of cells n , one of the solutions

will become unbounded and the other will decay to zero.

iii) H = + 2 . If H = 2 , then o 1 = a2 a is a root of multiplicity

2. Since o 102 = 1 , it follows that (1' = I and therefore either o = + 1

or a = - 1 , each being a double root. When c = 1 for H = 2 , the

solution is periodic with period d , since in this case Z(z + d) = Z(z).

When 0 = - 1 for H = - 2 , the solution is periodic with period 2d

because in this case Z(z + 2d) = (-1)2 Z(z) = Z(z) . In the case of

double roots only one solution is basically periodic, the second linearly

independent solution is in general aperiodic, [ 3 ].

t This is reminiscent of a similar situation in the theory o ordinary
differential equations, when the indicial equation has rout ot highlr
multiplicity.
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The characteristic equation (7), or equivalently eqn. (11) takes

a familiar form if we introduce the transformation

o = exp2i(T + T)A , (i2 E - 1) (15)

where

Z4h (16)

*and ) is a characteristic exponent (also known as Floquet's exponent),

wi ci dut c n invs the pliasc ;h I ft. In the transformat Ion (P), A is

,',ugkucnt modulo ii/(i + T). For a given o , the value oi- A Is deti.r-

mined uniquely in the interval ILXI:LO , v/(1 + 0. Having deter-

mined X in the interval I[A] , all other values of A are congruent

to it modulo ir/(T + T).
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5. THE CHARACTERISTIC X-EQUATION

In terms of the characteristic exponent A , the two characteris-

tic equations (4.11)2,1 can be written in the useful form

1

sln 2 (T + T)A = X -(2 - H)

The function H is defined in terms of w1 (d) and w2(d) which can

be easily obtained from w1 (Z), w 2 (z), which aregiven by (3.10). After

some algebraic simplification it can be shown that the two characteristic

equations (1), take the interesting product form

sin2 (T+T)A = {C(T )S( )+ S(T)C(TO)}{C('T)S(T + S(TC(

(2)

cos 2 (i+t)A = {C(-[ )C(T7)_ )~~}Cr~Cr)

where S and C are abbreviations for trigonometric sine and cosine

functions, respectively. We may now note that the two trigonometric

functions sin2(T+7)A and cos2 (T+T)A , are even-functions about A = 0

and A -7/[2(T+T)] . In addition, A is congruent modulo T/(T+T) . It

is therefore sufficient to restrict Floquet's wave number ' to the

interval IB[A] : [0,r/2(T+r)] . With this restriction on the value of

A , the frequency spectrum Q versus A has a zone structure, and in K

the first Brillouin zone IBA varies from 0 to /[2(T+T)], [ 7 1
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The characteristic roots Q of this characteristic equation can

be arranged in an increasing order and thus can be indexed by a suffix n.

It can be shown graphically that the order follows the well-known

Lyapunov-Haupt sequence, [13,14]. In particular, it can be exhibited

explicitly at the end-points of the Brillouin zone, A = 0 and

A 7/[2(+T)1.

Of particular interest is the case when H = 2, that is, when

o I . When o = 1 , X = n7/(T+-+) , n = 0,1,2,... and in the reduced

zone scheme A = 0 corresponds to the left end-point of the interval

I . Since a = I is a zero of multiplicity 2 , out of the two linearly

independent solutions only one is periodic with period d ; the second

solution is aperiodic. Corresponding to the periodic solutions with

period d , the characteristic equation (2)1 uncouples into two equations

1) tanTE + tanrE = 0

=, H =2 (3)

2) tant + tanTE = 0

When a -1 , A =(n+l/2)ir/(T+), n = 0,1,2,... and in the reduced

zone scheme A =n/2(T+T) corresponds to the right end-point of the

interval IB . Since a = - I is a zero of multiplicity 2, only one

linearly independent solution is periodic with period 2d. Corresponding

to the periodic solution with period 2d, the characteristic equation (2)2

uncouples into two equations

I) cotTT - tanTC = 0

-, H -2 (4)

coT ai
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One can easily see that the multiplicity of the root a = I , corres-

ponds to the multiplicity of the root X = n7/(i+T) , and multiplicity

of the root a -1 corresponds to the multiplicity of the root

X =(n+1/2)Tr/(T+T) . This follows from the fact that in the first case

sin 2 (+T)A and its first derivative, both vanish at the left end-point

2of the Brillouin zone. In the second case cos (T+c)X and its first

derivative, both vanish at the right end-point of the Brillouin zone.

If Z(z) is a solution then Z(-z) is also a solution because

the differential equation is invariant under coordinate reflection.

These two solutions are in general linearly independent, unless Z(z)

is an even or an odd solution. However, we have shown the existence

of periodic solutions for a = ± . Therefore, either Z(z) is a

periodic solution or it is not. If Z(z) is a periodic solution then

it is either even or odd. If it is not even or odd then we can construct

the solutions [Z(z) + Z(-z)] and [Z(z) - Z(-z)] which are even-periodic

and odd-periodic, respectively. In either case, even-periodic and

odd-periodic solutions can always be determined, when periodic solutions

exist. Thus at the left (right) end-point of the Brillouin zone, even-

and odd-periodic solutions with period d(2d) can always be determined.

The dispersion spectra on an extended zone scheme are shown in Fig. (1)

for K. = 0 , and in Fig. (2) for K1 = 1.18920. The material parameters

are t - 1/3, y = 1/4, P/V = 40, P/p = 5/2 and T/T = 5. Real seg-

ments of the spectra are shown as full lines, imaginary segments are shown

as dotted lines. In Fig. (2), point A corresponds to the limiting case

= 0 , and point B to the limiting case when = 0 . In these figures,

hatched regions represent stopping bands.
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6. CHARACTERISTIC A-EQUATION FOR K 0

In the case of pure torsional mode 0 = 0 and this implies

K 0 = y . The characteristic equations (5.2) now take

a simple form

; sin 2 (T+U)X = C(T[)S(YTQ)+ -S(Ta)C(yT2)}C( sf)S(yTf)+ -- S(r2)C(yTf2)

cos 2 (t+T)X = c(t1)C(YT)- -- S(Q) S -S(t)S(y)
*P 1. jy

At the end-points of the Brillouin zone, for o 1 the charac-

teristic equations are

1) tanyTQ + - tanr = 0

=i, H =2 (2)

2) tanyTQ + tanQ = 0

and for o = -1, the characteristic equations are

ii) coty 2 - - tanQ = 0

(3)

2) coty -- tanT 0
Y
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7. LYAPUNOV-HAUPT SEQUENCE

We now demonstrate graphically that at the end-points of the

Brillouin zone the characteristic values of X can be arranged in a

Lyapunov-Haupt sequence,[13,14]. This is an interesting and an important

property of differential equations with periodic coefficients, and in

this relatively simple case it can be demonstrated explicitly. We first

consider the case of pure torsional mode, corresponding to K = 0

Let y1i/p F, yT/r- T and TfI E x. Then for o = 1 , eqn. (6.2)

can be written as

1) Tx = kn - tan- F tanx

(1)

2) Tx= k7 -tan -  tanx

and for a = -1, eqn. (6.3) takes the form

1) Tx = (2k+l)Tr/2 - tan F tanx

(2)

2) Tx (2ki-l)TT/2 - tani tanX

where in these equations k = 0,1,2,...

First consider the multi-valued function

f(x) kr - tan- Ftanx , k 0,1,2,... (3)
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for a fixed value of parameter F . The slope of the function is

f'(x) = - F/(cos 2 x + F2 sin2 x) , (4)

and its curvature is

sin2x
= F(F 2 

- i) (cos2x + F2sin 2 x) 2  (5)

Since F > 0, the slope is always negative and reaches a value -F for

x = 0,7r,2Tr,..., and a value of -1/F for x = 7/2,37/2,57/2,...

-A. For F = 1 , the curvature is zero. For F 1, the curvature is zero

when x = 0,7/2,7,3 /2,.... When F = 1, f(x) = kT-x, and represents

a straight line with slope -1 and zero curvature. Further f(x) = k7

for x = 0,7,27,... and for x = 7/2,3ff/2,57/2,..., f(x) = (k- 1)7

For other values of x , the function can be readily computed and the

spectral lines are shown in Fig. ( 3), marked 1 . We can similarly

analyze the function

-11
f(x) = k7 - tan - tanx,

and the spectral lines are shown in Fig. ( 3), marked 2. The points of

intersection of the set of these two family of curves with the

straight line with slope T locates the zeros of the two characteristic

equations (6.2)1,2. It is obvious from the figure that the zeros of

these two characteristic equations, which correspond to periodic solutions

with period d , form a sub-sequence
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0 = 0 < l 1 Q2 < Q 4 < 5 6 < " (6)

We can similarly plot the two functions f(x) corresponding to

the case u = -1 . In Fig. (3 ), these curves are marked I and 2

The intersection of these curves with the straight line with slope T

locates the zeros of the t. o characteristic equations (6.3) If
1,2-

Q represents an element of this sequence, then it is obvious from the

figure that the elements can be ordered in a sub-sequence

1 fl <  2 <  Q 3 < f4 <  5 <  a6 <  " "(7)

Combining the two sub-sequences, we have the Lyapunov-Haupt sequence

i, 0 = a < fl <  < Ql < Z <  Q3< i <  < . 8

o 1 2 1 2 3 4 3 "4

It may be remarked that such a sequence is a characteristic of a wide

class of problems governed by differential "quations with periodic

coefficients.

We now consider the general case for the radial eigenvalue K
2 > 0.

In this case the characteristic eigenvalues at the end-points of the

Brillouin zone, for a = +1 and G = -1 are given by

1) T& kir - tan~ c tanT&

2) T = kn - tan- I P tanT ;

(9)

iI) r = (2k+l)-- - tan-1 III tanTrFE

2) TZ = (2k+l)- - tan- ' P tant •

I 2
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Consider the first of the four equations (9)1 • In the notation

defined earlier, this equation can be rewritten as

Tv'x2-(KT/7) 2 = kr + f (x) , (10)

where the function fl(x) is defined as

f1(x) ~ ~ 2 /ytJ1F -Kn)
2 ta V JX>K/

=- ( /
X 2 ( K

=
.- 2tan 4/(- ) tanx 2 (KT) 2  ,X > KT/<

= 0 , xx= l(r)2 y

= 0 , x = K/T

= 0 X =V(K-T)2+ 47T

= -i tanh-1 (rK T 3 , x= KT , y< 1

= -i tanh- I  4?4(KT 2 tanhv/(KT)2-X 0 < x < K-

= -i tanh-l( tanhKTn , x = 0

For t b/a = 1/3 , the first radial eigenvalue is KI  1.18920. For

the purpose of numerical computations we select as before

j/p - 40, P/p = 5/2, k/a = 3/5, 2/a = 3
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which leads to

Y = 1/4, r = 10, T = 9f/20, T = 97/4, T = 5/4

as the values of the parameters. We now plot the function k7T + f (x)

for k = 0,1,2,.... The points of intersection of these curves with

the parabola TVx
2 -(KT/y)2 , locate the zero of the characteristic equa-

tion (9)1 • In Fig. (4), the parabola and the spectral lines are drawn

for x > K-/Y , and the spectral lines corresponding to the character-

istic equation (9) are marked 1 . The spectral lines for the second

'characteristic equation are also shown in the same figure, and marked 2.
It is obvious from the figure that the zeros of the two characteristic

. equations, when arranged in an increasing order, form a subsequence,

which is similar to the case K = 0 . The second system of character-
0

istic equations are plotted similarly and are shown in the same figure.

fsespectral lines are marked 1 and 2 , respectively. Again it is

abvious from the figure that corresponding to the zeros 2 , there again

exists a sub-sequence, similar to the case K = 0 . Combining the two0

subsequences, we find that the zeros of these four equations, when

arranged in an ascending order, form the Lyapunov-Haupt sequence.



8. CO-EXISTENCE OF PERIODIC SOLUTIONS

To study the problem of co-existence of periodic solutions, we

first consider the case of pure torsional mode when K = 0 . For a = 1,0

the two characteristic equations are

r sinx cosTx + cosx sinTx = 0

r cosx sinTx + sinx cosTx = 0

Consider first the case when r = 1 . In Fig. ( 3), the spectral lines

corresponding to F = 1 are straight lines with slope -1. The points

of intersection of these lines with a line of slope T are all roots of

multiplicity 2. This also follows from the fact that when F = 1 , these

two equations are equivalent to one equation cos2(l+T)x = 1 , whose

zeros are given by xn = nlT/(l+T) , n = 0,1,2,.... These are zeros

of multiplicity 2, because the derivative sin2(l+T)x E 0 . Thus,

when o 1 and F = 1 , we arrive at the Q-subsequence

0 = o 1< i 2 < S3 Q 4 < Q5 Q 6 <

Similarly when a = -1 , the two characteristic equations are

Y sinx sinTx - cosx cosTx = 0

(2)
r cosx cosTx - sinx sinTx = 0
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When F = 1 , these two equations are equivalent to one equation

cos2(l+T)x -1 , whose zeros are x = (n+l/2)7/(l+T) , n - 0,1,2,...

Again these are zeros of multiplicity 2, because the derivative

sin2(l+T)xn  0 Thus in this case we arrive at the 0-subsequence

In

2< ~ <2
i 2 3 4 5 6 <

Combining the two, we have in this case the Lyapunov-Haupt sequence

4< 1 2 <  i 2 3 4 <  3 R 4 <  (3)

for F = i.

We now consider the case when r y 1 , o = 1 To find the zeros

of multiplicity 2, we consider the product of eqns. (1)i and (1)2, which

can be written in the form

- sin2x sin2Tx - 2[cos2(1+T)x-1] = 0 (4)

The first derivative of this equation is

r [cos2x sin2Tx + Tsin2x cos2Tx] + 2(1+T)sin2(l+T)x = 0.

(5)

Evidently, these two equations will be satisfied if x and T are so

chosen that

sin2x 0 , sin2Tx = 0 , and cos2(l+T)x I . (6)
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The roots x so determined, are roots of multiplicity 2 and are given

by

xn =qV2 , T = p/q
(7)

(q+p) = 2n, q,p,n = 0,1,2,3,...

We thus see that there exist multiple roots only when T is a rational

number. For rational values of T , a line with this slope will pass

through the intersection points of the spectral lines corresponding to

the two equations (1). The coordinates of the intersection points are

4 (q j , p -) , where at each intersection point (q+p) = 2n . These

* intersection points are clearly shown in Fig. ( 3), and all those

intersection points which lie on the line passing through the origin

with slope T = p/q , are zeros of multiplicity 2. Thus if (q 7/2,

p v/2) where (q+p) = 2n be the coordinates of the first zero of mul-

tiplicity 2 on the line T = p/q , then the coordinates of higher zeros

on this line are m(q r/2, p ff/2) , where m(q+p) = 2n. As a typical

case, the Q-subseqwnce for T = 3/1 is given by

0 =0 < QI < Q 2 < 3 =S1 4 < 05 < Q6 < Q7 = 18 < 09 < ... (8)

We now consider the second case when F 0 1 and o = -1 . It

can similarly be shown that corresponding to equation (2), there exist

double roots if x and T are so chosen that they satisfy the equations

sin2x = 0 , sin2Tx = 0 , and cos2(l+T)x = -1 (10)
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In this case, we have roots 
of multiplicity 2 when

x = q /2  , T = p/q (11)n

(q+p) = 2n+l, q,p,n = 0,1,2,3,...

The coordinates of the intersection point of the family of curves corres-

ponding to equation (2) are (q R/2, p r/2) where (q+p) = 2n+l . Those

intersection points which lie on the line with slope T = p/q , have

the coordinates m(q 7/2, p 7/2) , where m(q+p) = 2n+l . As a typical

case, the -subsequence for T = 2/1 is

i <  2 <  3 4 <  5 <  6 < f7 < n8 < S19 = i0 < "" (12)

1 2 3 4 5 6 7 8 9 10

Combining the two results, the Lyapunov-Haupt sequence for a typical

value of T = p/q can now be easily constructed. Choosing T = 3/1

the sequence is

o< < 2 1 <  2 <  3 <  4 3 4

< 5 < 6 <  5 <  6 <  7 8 <  7 2 8 <  (13)

Now consider the intersection of the line with slope T = p/q ,

with the spectral lines corresponding to a = ±1 . At each intersection

point there exists at least one periodic solution, of period d or 2d ,

depending upon a - +1, or -1 , respectively. When the line with slope

T - p/q intersects a lattice-point with coordinates (q 7/2, p m/2)



32

two periodic solutions, both of period d or of period 2d , co-exist.

This is called co-existence,implying existence of 2 periodic solutions

of the same period, or coincidence, implying existence of eigenvalues

of double multiplicity. Naturally, coincidence of frequencies implies

co-existence of periodic solutions, and conversely.

We now consider the problem of co-existence of periodic solutions

when the radial eigenvalue K
2 > 0 . The theory tells us that when

o = ±1 , there exists, in general, one periodic solution corresponding

to every simple eigenvalue of the characteristic equations (5.3,5.4). The

other linearly independent solution corresponding to the same eigenvalue

is, in general, aperiodic. The problem of co-existence of periodic

solutions requires the existence of non-simple eigenvalues of double

multiplicity. We therefore look for double roots of the characteris-

tic equation when K2 > 0 . When o = 1 , K2 > 0 , the characteristic

equation (5.3) has the equivalent form

/ - sjn2V 7-(KT)2 sin2T --(KT/y)2

-2Los2(V~x-(KT)2 +T2-(K-/y)) - = 0 , (14)

where

A FVr~x2-(KT/y)2)/(X2-(Kr)2)

(15)

rEyIJ/AJ , T H yT/T , x n

We consider the case when 1/y > 1 . Then equation (14) and its first

derivative will simultaneously be satisfied if x and T are so chosen

I h~ id ~ 4
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that they satisfy the equations

sin2V- ff(KiT) 0 sin2T/x2(K/) 2 
= U

(16)

cos2(vrx7-(-K) + T/- (_T/T) 2) 1 1

The roots of multiplicity 2 are therefore given by

Xq = (q7/2)+(KT)2  
, T = 2 (17)

p + q = 2n , q,p,n = 0,1,2,3,...

We thus see that there exist roots x of multiplicity 2 if, in general,
q

T is an appropriately chosen irrational number satisfying condition

(17)2. If for a given K , there exist an integer k and parameters

y and T such that (I/y2-l)(2r/) 2 = (q2 -1 2 )/IK 2 , then T is a

rational periodic decimal number. If we assume that T is a suitably

chosen irrational number, then a parabolic curve TV T2W-/)" will

pass through a lattice-point (xq9 pr/2 ) of the intersecting family of

spectral lines corresponding to the two characteristic functions (7.9)

This lattice-point (xq, pn/2), p + q = 2n, is then a zero of multiplicity

2. Thus for y = 1/4, T = 9ir/20, K 1 = 1.18920, x5 = 2.556 b33TI will

be a zero of multiplicity 2 if we choose i in such a way that

T - p/2.795 981, where 5 + p - 2n. Similarly x6 = 3.047 355T will be

a zero of multiplicity 2 for T - p/4.337916, where 6 + p - 2n. As an

example, let q - 6 and p = 2 so that 4.337 916T - 2. The parabola

T'x2-(Kl/y)2 now intersects the lattice-point (xb, r) , and examination

.+ %-
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of Fig. ( 4) reveals that we have a subsequence which can be arranged in

an ascending order, except that one of the eigenvalue is of multipli-

city 2. The structure of this sequence is obvious from Fig. ( 4).

We now consider the case when o K- , K
2 > U . It can similarly

be shown that corresponding to the characteristic equat4 on (5.4), there

exist double roots if x and T are so chosen that they satisfy the

equations

sin2vT2(K>)7 = 0, sin2Tvx2-(K/-y)2 = 0

(18)
I

cos2(X-(K -r + T /x-(K /y)2 ) -

In this case the roots of multiplicity 2 are given by

X = V(q7/2)
2+ (K )

2  T =P

(19)

p + q = 2n + 1 , p,q,n = 0,1,2,3,...

The discussion concerning these roots of multiplicity 2, follows along

the same lines as in the previous case when o = +1, and therefore hardly

needs reiteration. However, we may repeat that existence of the double

roots implies co-existence of two periodic solutions, both of the same

period, d or 2d * whichever the case may be.
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9. STABILITY

To study regions of lability and stability we now plot graphs show-

ing x versus T , for K = 0 and K 1 = 1.18920 , which are shown in

Figs. ( 5) and (6) , respectively.

Solutions are called stable and bounded when HI - 2 . For values

of x and T in the hatched regions in these figures, all solutions are

stable, and the hatched regions are regions of stability. Unhatched

regions are regions of lability where JHI > 2 , and the solutions are

unbounded. On the boundaries of hatched and unhatched regions, JHI = 2,

and therefore for a typical point (x,T) on the boundary, there exists

at least one periodic solution of period d , or 2d . At a point of

intersection, two such periodic solutions co-exist. These points of

intersection, correspond to similar intersection points in Figs. ( 3 ) and

(4). We note from the stability diagrams that there is one value of

T for which Q = 2 , three values of T for which Q = 4 ' 5 values

of T for which Q5 = S6 6 etc... , no value of T for which i =2

2 values of T for which 3 4 4 4 values of T for which n5 = £6

etcetera.
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